BST/STA 226	Statistical Methods for	David M. Rocke
Winter 2014	Bioinformatics	January 8, 2014

Course Information

Class Meetings: Lab:	Mon/Wed 1:10pm-2:30pm, 1143 MSB Mon/Wed 2:40pm-3:00pm, 1143 MSB
Office Hours: Office:	By appointment. 140B Med Sci 1C (530-752-6999) FAX: 530-752-3239
	e-mail: <u>dmrocke(a)ucdavis.edu</u> web site: http://dmrocke.ucdavis.edu/
Text:	None. Lectures, notes, papers, and data sets will be posted on line.
Computer	Please bring a laptop to class, OS X, Windows, or Linux should all be fine. A few of the data sets will be large (up to several gigabytes). We will mostly
~ ~ ~	use R for analysis.
Course Grading:	Letter Grades based on
	Homework
	Class Participation
Class Dates	Mondays and Wednesdays, January 8 to March 17
No Class	January 6 (would have been the first class)
	March 3 and 5 (I will be at a conference)
Prerequisites	Statistics 131C or the equivalent. Some experience with programming and statistical software is helpful.

This course is an introduction to statistical methods for biological measurement data, including of gene expression, protein abundance, and metabolite abundance. We will cover methods for one-variable analysis, as in Western blots or PCR, as well as high-throughput techniques such as gene expression arrays, multiplexed protein assays, metabolomics, and RNA-Seq. We will us a variety of statistical methods and computational approaches as demanded by the data and the biological issues.

Tentative Topical Outline

- I. What are we measuring and why? The Biology of Bioinformatics
 - A. DNA Sequences
 - B. RNA Transcripts
 - C. Proteins
 - D. Metabolites
 - E. Epigenetics and Gene Regulation
- II. Assay Measurement
 - A. Calibration
 - B. Standardization
 - C. Normalization
 - D. Detection limits
 - E. Error models
 - F. Interlaboratory studies
 - G. Intralaboratory studies
- III. Survey of Instrumental Methods
 - A. Mass Spectrometry
 - B. Arrays
 - C. RNA-Seq
 - D. NMR Spectroscopy
 - E. ELISA and similar assays (Luminex)
 - F. PCR
 - G. Westerns, etc.
- IV. Experimental Design
 - A. Principle of Experimental Design
 - B. Factorial Designs
- V. Expression arrays
- VI. Array analysis with R
- VII. Random and Mixed Effects Models
- VIII. GO and gene/protein annotation
- IX. Gene groups, pathways, and inference
- X. Proteomics and Metabolomics
- XI. Significance, Prediction, and Classification
- XII. Generalized linear models and RNA-Seq
- XIII. Multivariate analysis
- XIV. Reproducible Research